Numerical simulation of transient flow field in a mixed-flow pump during starting period

Author:

Li Wei,Zhang Yang,Shi Weidong,Ji Leilei,Yang Yongfei,Ping Yuanfeng

Abstract

Purpose This paper aims to study the transient flow characteristics in a mixed-flow pump during the start-up period. Design/methodology/approach In this study, numerical calculation of the internal flow field in a mixed-flow pump using the sliding mesh method was carried out. The regulation of the pressure, streamline and the relative speed during the start-up period was analyzed. Findings The trend of the simulated head is consistent with the experimental results, and the calculated head is around 0.3 m higher than the experimental head when the rotation speed reached the stable stage, indicating that the numerical method for the start-up process simulation of the mixed-flow pump has a high accuracy. At the beginning, the velocity inside the impeller changes little along the radius direction and the flow rate increases slowly during the start-up process. As the rotation speed reached the stable stage, the flow inside the impeller became steady, the vortex reduced and transient effects disappeared gradually. Originality/value The study results have significant value for revealing the internal unsteady flow characteristics of the mixed-flow pump and providing the reference for the design optimization of the mixed-flow pump.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference29 articles.

1. Effects of meridional flow passage shape on hydraulic performance of mixed-flow pump impellers[J];Chinese Journal of Mechanical Engineering,2013

2. Experimental study of a cavitating centrifugal pump during fast startups[J];Journal of Fluids Engineering,2010

3. Pressure fluctuation of interior flow in mixed-flow pump[J];Transactions of the Chinese Society for Agricultural Machinery,2013

4. High performance hydraulic design techniques of mixed-flow pump impeller and diffuser[J];Journal of Mechanical Science and Technology,2015

5. Centrifugal pump performance during transient operation[J];Journal of Fluids Engineering,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3