Study on the impact of soil environment organic substances on the ageing of urban PE gas pipes in service

Author:

Li Manman,Bao Qing,Lei Sumin,Xing Linlin,Gai Shu

Abstract

Purpose The service environment of urban polyethylene (PE) pipes has a crucial influence on their long-term safety and performance. Based on the application and structural performance analysis of PE pipe failure cases, this study aims to investigate the impact of organic substances in the soil on the aging behavior of PE pipes by designing organic solutions with different concentrations, which are based on the composition of organic substances in the soil environment, and periodic immersion tests. Design/methodology/approach Soil samples in the vicinity of the failed pipes were analyzed by gas chromatography-mass spectrometry, sensitive organic substances were screened and soaking solutions of different concentrations were designed. After the soaking test, the PE pipe samples were analyzed using differential scanning calorimetry, Fourier-transform infrared spectroscopy and other testing methods. Findings The performance difference between the outer surface and the middle of the cross section of PE pipes highlights the influence of the soil service environment on their aging. Different organic solutions can have varying impacts on the aging behavior of PE pipes when immersed. For instance, when exposed to amine organic solutions, PE pipes may have an increased weight and decreased material yield strength, although there is no reduction in their thermal or oxygen stability. On the contrary, when subjected to ether organic solutions, the surface of PE pipe specimens may be affected, leading to a reduction in material fracture elongation and a decrease in their thermal and oxygen stability. Furthermore, immersion in either amine or ether organic solutions may result in the production of hydroxyl and other aging groups on the surface of the material. Originality/value Understanding the potential impact of organic substances in the soil environment on the aging of PE pipe ensures the long-term performance and safety of urban PE pipe. This research approach will provide valuable insights into improving the durability and reliability of urban PE pipes in soil environments.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3