Patient and wearable device authentication utilizing attribute-based credentials and permissioned blockchains in smart homes

Author:

Kembo Solomon Hopewell,Mpofu Patience,Jacques Saulo,Chitiyo Nevil,Mukorera Brighton

Abstract

PurposeCoronavirus Disease 2019 (COVID-19) necessitated the need for “Hospital-at-home” improvisations that involve wearable technology to classify patients within households before visiting health institutions. Do-It-Yourself wearable devices allow for the collection of health data leading to the detection and/or prediction of the prevalence of the disease. The sensitive nature of health data requires safeguards to ensure patients’ privacy is not violated. The previous work utilized Hyperledger Fabric to verify transmitted data within Smart Homes, allowing for the possible implementation of legal restrictions through smart contracts in the future. This study aims to explore privacy-enhancing authentication schemes that are operated by multiple credential issuers and capable of integration into the Hyperledger ecosystem.Design/methodology/approachDesign Science Research is the methodology that was used in this study. An architecture for ABC-privacy was developed and evaluated.FindingsWhile the privacy-by-design architecture enhances data privacy through edge and fog computing architecture, there is a need to provide an additional privacy layer that limits the amount of data that patients disclose. Selective disclosure of credentials limits the number of information patients or devices divulge.Originality/valueThe evaluation of this study identified Coconut as the most suitable attribute-based credentials scheme for the Smart Homes Patients and Health Wearables use case Coconut user-centric architecture Hyperledger integration multi-party threshold authorities public and private attributes re-randomization and unlinkable revelation of selective attribute revelations.

Publisher

Emerald

Subject

General Medicine

Reference43 articles.

1. Cai, X. and Van Dijk, J.A.G.M. (2008), “The deepening divide: inequality in the information society”, Mass Communication and Society, Vol. 11 No. 2, pp. 221-224, doi: 10.1080/15205430701528655.

2. EWOT: a semantic interoperability approach for heterogeneous IoT ecosystems based on the web of things;Sensors,2020

3. Concepts and languages for privacy-preserving attribute-based authentication;HAL Open Science,2013

4. The do not track mechanism for digital footprint;Journal of Business Economics and Management,2018

5. Digital inequality: from unequal access to differentiated use;Social Inequality,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3