A new energy-saving block and invisible multiribbed frame structure

Author:

Li Shengcai,Lin Jianqing,Lin Wencong,Zheng Jianying,Tu Yanzhou,Zheng Jiansheng

Abstract

Purpose Based on the conceptual design of seismic resistance in buildings, this study aims to put forward a new construction structure energy-saving block structure with invisible multiribbed frame. Design/methodology/approach The structure is composed of energy-saving block wall panels with invisible multiribbed frames, lightweight partition wall plates and cast-in-place reinforced concrete floor slabs. The structure design is simple and the construction is convenient and fast. The comprehensive economic index of the structure is better than that of brick-and-concrete composite construction. The self-weight of the energy-saving blocks that make up the wall is only about 25% of that of solid clay bricks. The thermal insulation and energy-saving effects of the structure can meet the national energy-saving requirements of buildings. Findings This new structure meets the requirements of national technology and economy, wall deformation, thermal insulation and energy-saving, and can be used mainly for multistory and mid- to high-rise residential buildings. For the core components of the new structure energy-saving block and invisible multiribbed frame composite wall, as the axial compression ratio increases in the test parameters range, the peak bearing capacity and ductility of the wall increase and the initial stiffness of the wall decreases. The axial compression ratio has a significant effect on the energy dissipation capacity of the wall. The displacement ductility coefficients ν are all greater than 2, indicating the optimal seismic performance of the wall. Originality/value This structure is a new, economical, lightweight, energy-saving, seismic resistant, multistory and mid- to high-rise structure that fully conforms to national conditions.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3