Parameter identification of concrete dams using swarm intelligence algorithm

Author:

Dou Siqi,Li Junjie,Kang Fei

Abstract

Purpose Parameter identification is an important issue in structural health monitoring and damage identification for concrete dams. The purpose of this paper is to introduce a novel adaptive fireworks algorithm (AFWA) into inverse analysis of parameter identification. Design/methodology/approach Swarm intelligence algorithms and finite element analysis are integrated to identify parameters of hydraulic structures. Three swarm intelligence algorithms: AFWA, standard particle swarm optimization (SPSO) and artificial bee colony algorithm (ABC) are adopted to make a comparative study. These algorithms are introduced briefly and then tested by four standard benchmark functions. Inverse analysis methods based on AFWA, SPSO and ABC are adopted to identify Young’s modulus of a concrete gravity dam and a concrete arch dam. Findings Numerical results show that swarm intelligence algorithms are powerful tools for parameter identification of concrete structures. The proposed AFWA-based inverse analysis algorithm for concrete dams is promising in terms of accuracy and efficiency. Originality/value Fireworks algorithm is applied for inverse analysis of hydraulic structures for the first time, and the problem of parameter selection in AFWA is studied.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference34 articles.

1. Diagnostic analysis of concrete dams based on seasonal hydrostatic loading;Engineering Structures,2008

2. Diagnostic inverse analysis of concrete dams with statical excitation;Journal of the Mechanical Behavior of Materials,2004

3. Swarm intelligence in cellular robotic systems,1993

4. Swarm intelligence in optimization,2008

5. Defining a standard for particle swarm optimization,2007

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3