Abstract
PurposeThis paper is devoted to the theoretical and numerical study of a new topological sensitivity concerning the insertion of a small bolt connecting two parts in a mechanical structure. First, an idealized model of bolt is proposed which relies on a non-local interaction between the two ends of the bolt (head and threads) and possibly featuring a pre-stressed state. Second, a formula for the topological sensitivity of such an idealized bolt is rigorously derived for a large class of objective functions. Third, numerical tests are performed in 2D and 3D to assess the efficiency of the bolt topological sensitivity in the case of no pre-stress. In particular, the placement of bolts (acting then as springs) is coupled to the further optimization of their location and to the shape and topology of the structure for volume minimization under compliance constraint.Design/methodology/approachThe methodology relies on the adjoint method and the variational formulation of the linearized elasticity equations in order to establish the topological sensitivity.FindingsThe numerical results prove the influence of the number and locations of the bolts which strongly influence the final optimized design of the structure.Originality/valueThis paper is the first one to study the topology optimization of bolted systems without a fixed prescribed number of bolts.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Reference31 articles.
1. Structural optimization using sensitivity analysis and a level-set method;Journal of Computational Physics,2004
2. Damage evolution in brittle materials by shape and topological sensitivity analysis;Journal of Computational Physics,2011
3. The topological asymptotic for the Navier-Stokes equations;ESAIM: Control, Optimisation and Calculus of Variations,2005
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献