Clairaut anti-invariant submersions from Lorentzian trans-Sasakian manifolds

Author:

Siddiqi Mohd DanishORCID,Chaubey Sudhakar Kumar,Siddiqui Aliya Naaz

Abstract

PurposeThe central idea of this research article is to examine the characteristics of Clairaut submersions from Lorentzian trans-Sasakian manifolds of type (α, β) and also, to enhance this geometrical analysis with some specific cases, namely Clairaut submersion from Lorentzian α-Sasakian manifold, Lorentzian β-Kenmotsu manifold and Lorentzian cosymplectic manifold. Furthermore, the authors discuss some results about Clairaut Lagrangian submersions whose total space is a Lorentzian trans-Sasakian manifolds of type (α, β). Finally, the authors furnished some examples based on this study.Design/methodology/approachThis research discourse based on classifications of submersion, mainly Clairaut submersions, whose total manifolds is Lorentzian trans-Sasakian manifolds and its all classes like Lorentzian Sasakian, Lorenztian Kenmotsu and Lorentzian cosymplectic manifolds. In addition, the authors have explored some axioms of Clairaut Lorentzian submersions and illustrates our findings with some non-trivial examples.FindingsThe major finding of this study is to exhibit a necessary and sufficient condition for a submersions to be a Clairaut submersions and also find a condition for Clairaut Lagrangian submersions from Lorentzian trans-Sasakian manifolds.Originality/valueThe results and examples of the present manuscript are original. In addition, more general results with fair value and supportive examples are provided.

Publisher

Emerald

Subject

General Mathematics

Reference31 articles.

1. The imbedding problem for Riemannian manifolds;Ann Math,1956

2. The fundamental equations of a submersion;Mich Math J,1966

3. Pseudo-Riemannian almost product manifolds and submersion;J Math Mech,1967

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3