Physical Internet-enabled automobile production–distribution joint optimisation with multistage workshop

Author:

Ji ShoufengORCID,Xue YaotingORCID,Zhu GuosongORCID

Abstract

PurposeThe Physical Internet (PI) application in a supply chain is explored by automakers to achieve a digital supply chain to challenge timely delivery while maintaining high customised production at the lowest operating cost.Design/methodology/approachA bi-objective mixed integer model is formulated, where production is performed in multistage manufacturing systems (MMS) and then delivered in a two-level distribution system. Next, a hybrid iterative method algorithm is developed to solve the practical-scale problem within an admissible time. Finally, PI's benefits on production and supply chain operation are discussed through extensive computational experiments in different supply chain configurations.FindingsThree significant findings are obtained. First, PI can achieve a comparable or better service level, while the cost is always lower. Second, PI can improve the utilisation of production and transportation resources. Third, with a more complex supply chain and a higher production cost or truck fixed cost, PI's advantages over traditional supply chain become more vigorous, but the increase in orders will weaken it.Practical implicationsThe auto enterprise should adopt a PI-enabled supply chain (PI-SC), especially with the increase of network complexity and specific cost factors.Social implicationsImportance should be attached to the PI-SC to make customers better involved in the supply chain.Originality/valueFirst, the application of PI in the existing plant is described. Second, MMS production with multi-mode transportation is jointly scheduled. Third, the decision support of the PI-SC is provided for auto enterprises.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3