A FINITE ELEMENT TECHNIQUE FOR THE ULTIMATE STRENGTH ANALYSIS OF TUBULAR JOINTS

Author:

COFER WILLIAM F.,WILL KENNETH M.

Abstract

Offshore structures are generally constructed as frameworks of tubular members. The tubular joints should be designed to allow the full post yield or post buckled capacity of the members. However, design guidelines for ultimate strength capacity of these joints are based exclusively upon compilations of test data for simple configurations under simple loading conditions. A methodology based upon the finite element method is presented for analytically predicting the ultimate strength of arbitrary tubular joints. Eight node, isoparametric, curved shell elements were used for the majority of the tubular joint model. Twenty node, isoparametric, solid elements were used to capture the three‐dimensional stress state at the shell intersection while fifteen node, isoparametric, wedge elements modelled the weld profile. Solid‐shell transition elements provided the connection between the three‐dimensional solid elements and the surface based shell elements. Non‐linearities were included via an elastoplastic material model with isotropic strain hardening and the updated Lagrangian approach for finite deflections and rotations. Several experimental tubular joint analyses were reproduced to validate the analytical procedure. Non‐linear finite element analysis was shown to be a practical approach for the evaluation and extension of current design procedures for tubular joints.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3