Abstract
Purpose
This paper aims to discuss inverse problems that arise in a variety of practical thermal processes and systems. It presents some of the approaches that may be used to obtain results that lie within a small region of uncertainty. Therefore, the non-uniqueness of the solution is reduced so that the final design and boundary conditions may be determined. Optimization methods that may be used to reduce the uncertainty and to select locations for experimental data and for minimizing the error are presented. A few examples of thermal systems are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems.
Design/methodology/approach
In most analytical and numerical solutions, the basic equations that describe the process, as well as the relevant and appropriate boundary conditions, are known. The interest lies in obtaining a unique solution that satisfies the equations and boundary conditions. This may be termed as a direct or forward solution. However, there are many problems, particularly in practical systems, where the desired result is known but the conditions needed for achieving it are not known. These are generally known as inverse problems. In manufacturing, for instance, the temperature variation to which a component must be subjected to obtain desired characteristics is prescribed, but the means to achieve this variation are not known. An example of this circumstance is the annealing, tempering or hardening of steel. In such cases, the boundary and initial conditions are not known and must be determined by solving the inverse problem to obtain the desired temperature variation in the component. The solutions, thus, obtained are generally not unique. This is a review paper, which discusses inverse problems that arise in a variety of practical thermal processes and systems. It presents some of the approaches or strategies that may be used to obtain results that lie within a small region of uncertainty. It is important to realize that the solution is not unique, and this non-uniqueness must be reduced so that the final design and boundary conditions may be determined with acceptable accuracy and repeatability. Optimization techniques are often used for minimizing the error. This review presents several methods that may be applied to reduce the uncertainty and to select locations for experimental data for the best results. A few examples of thermal systems are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems. By considering a variety of systems, the paper also shows the importance of solving inverse problems to obtain results that may be used to model and design thermal processes and systems.
Findings
The solution of inverse problems, which frequently arise in thermal processes, is discussed. Different strategies to obtain the conditions that lead to the desired result are given. The goal of these approaches is to reduce uncertainty and obtain essentially unique solutions for different circumstances. The error of the method can be checked against known conditions to see if it is acceptable for the given problem. Several examples are given to illustrate the use of these methods.
Originality/value
The basic strategies presented here for solving inverse problems that arise in thermal processes and systems, as well as the optimization techniques used to reduce the domain of uncertainty, are fairly original. They are used for certain challenging problems that have not been considered in detail earlier. Several methods are outlined for considering different types of problems.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference30 articles.
1. Comparison of some inverse heat conduction methods using experimental data;International Journal of Heat and Mass Transfer,1996
2. On the significance of a wall effect in an enclosure with growing fires;Combustion Science and Technology,1984
3. Dynamic data-driven application systems: a new paradigm for application simulations and measurements,2004
4. The diffusion of turbulent jets;Advances in Heat Transfer,1984
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献