Strategies for solving inverse problems in thermal processes and systems

Author:

Jaluria Yogesh

Abstract

Purpose This paper aims to discuss inverse problems that arise in a variety of practical thermal processes and systems. It presents some of the approaches that may be used to obtain results that lie within a small region of uncertainty. Therefore, the non-uniqueness of the solution is reduced so that the final design and boundary conditions may be determined. Optimization methods that may be used to reduce the uncertainty and to select locations for experimental data and for minimizing the error are presented. A few examples of thermal systems are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems. Design/methodology/approach In most analytical and numerical solutions, the basic equations that describe the process, as well as the relevant and appropriate boundary conditions, are known. The interest lies in obtaining a unique solution that satisfies the equations and boundary conditions. This may be termed as a direct or forward solution. However, there are many problems, particularly in practical systems, where the desired result is known but the conditions needed for achieving it are not known. These are generally known as inverse problems. In manufacturing, for instance, the temperature variation to which a component must be subjected to obtain desired characteristics is prescribed, but the means to achieve this variation are not known. An example of this circumstance is the annealing, tempering or hardening of steel. In such cases, the boundary and initial conditions are not known and must be determined by solving the inverse problem to obtain the desired temperature variation in the component. The solutions, thus, obtained are generally not unique. This is a review paper, which discusses inverse problems that arise in a variety of practical thermal processes and systems. It presents some of the approaches or strategies that may be used to obtain results that lie within a small region of uncertainty. It is important to realize that the solution is not unique, and this non-uniqueness must be reduced so that the final design and boundary conditions may be determined with acceptable accuracy and repeatability. Optimization techniques are often used for minimizing the error. This review presents several methods that may be applied to reduce the uncertainty and to select locations for experimental data for the best results. A few examples of thermal systems are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems. By considering a variety of systems, the paper also shows the importance of solving inverse problems to obtain results that may be used to model and design thermal processes and systems. Findings The solution of inverse problems, which frequently arise in thermal processes, is discussed. Different strategies to obtain the conditions that lead to the desired result are given. The goal of these approaches is to reduce uncertainty and obtain essentially unique solutions for different circumstances. The error of the method can be checked against known conditions to see if it is acceptable for the given problem. Several examples are given to illustrate the use of these methods. Originality/value The basic strategies presented here for solving inverse problems that arise in thermal processes and systems, as well as the optimization techniques used to reduce the domain of uncertainty, are fairly original. They are used for certain challenging problems that have not been considered in detail earlier. Several methods are outlined for considering different types of problems.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference30 articles.

1. Comparison of some inverse heat conduction methods using experimental data;International Journal of Heat and Mass Transfer,1996

2. On the significance of a wall effect in an enclosure with growing fires;Combustion Science and Technology,1984

3. Dynamic data-driven application systems: a new paradigm for application simulations and measurements,2004

4. The diffusion of turbulent jets;Advances in Heat Transfer,1984

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3