Mechanism design and kinematic analysis of a robotic manipulator driven by joints with two degrees of freedom (DOF)

Author:

Huang He,Dong Erbao,Xu Min,Yang Jie,Low Kin Huat

Abstract

Purpose This paper aims to introduce a new design concept for robotic manipulator driven by the special two degrees of freedom (DOF) joints. Joint as a basic but essential component of the robotic manipulator is analysed emphatically. Design/methodology/approach The proposed robotic manipulator consists of several two-DOF joints and a rotary joint. Each of the two-DOF joints consists of a cylinder pairs driven by two DC motors and a universal joint (U-joint). Both kinematics of the robotic manipulator and the two-DOF joint are analysed. The influence to output ability of the joint in terms of the scale effect of the inclined plane is analysed in ADAMS simulation software. The contrast between the general and the proposed two-DOF joint is also studied. Finally, a physical prototype of the two-DOF joint is developed for experiments. Findings The kinematic analysis indicates that the joint can achieve omnidirectional deflection motion at a range of ±50° and the robotic manipulator can reach a similar workspace in comparison to the general robotic manipulator. Based on the kinematic analysis, two special motion modes are proposed to endow the two-DOF joint with better motion capabilities. The contrast simulation results between the general and the proposed two-DOF joints suggest that the proposed joint can perform better in the output ability. The experimental results verify the kinematic analysis and motion ability of the proposed two-DOF joint. Originality/value A new design concept of a robotic manipulator has been presented and verified. The complete kinematic analysis of a special two-DOF joint and a seven-DOF robotic manipulator have been resolved and verified. Compared with the general two-DOF joint, the proposed two-DOF joint can perform better in output ability.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference24 articles.

1. Gravity compensation in robotics;Advanced Robotics,2016

2. Present and future robot control development: an industrial perspective;Annual Reviews in Control,2007

3. The da Vinci surgical system,2011

4. Two-wheeled welding mobile robot for tracking a smooth curved welding path using adaptive sliding-mode control technique;International Journal of Control, Automation, and Systems,2007

5. Ikeda, H. and Takanashi, N. (1987), “Joint assembly movable like a human arm”, US Patent No. 4,683,406, 28 Jul 1987.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3