Reusability of metals/metal oxide coupled zinc oxide nanorods in degradation of rhodamine B dye

Author:

Le Anh Thi,Pung Swee-Yong

Abstract

Purpose This paper aims to investigate the reusability of metal/metal oxide-coupled ZnO nanorods (ZnO NRs) to degrade rhodamine B (RhB). Design/methodology/approach ZnO NRs particles were synthesized by precipitation method and used to remove various types of metal ions such as Cu2+, Ag+, Mn2+, Ni2+, Pb2+, Cd2+ and Cr2+ ions under UV illumination. The metal/metal oxide-coupled ZnO NRs were characterized by scanning electron microscope, X-ray diffraction and UV-Vis diffuse reflectance. The photodegradation of RhB dye by these metal/metal oxide-coupled ZnO NRs under UV exposure was assessed. Findings The metal/metal oxide-coupled ZnO NRs were successfully reused to remove RhB dye in which more than >90% of RhB dye was degraded under UV exposure. Furthermore, the coupling of Ag, CuO, MnO2, Cd and Ni particles onto the surface of ZnO NRs even enhanced the degradation of dye. The dominant reactive species involved in the degradation of RhB dye were OH- and O2-free radicals. Research limitations/implications The coupling of metal/metal oxide onto the surface of ZnO NRs after metal ions removal could affect the photocatalytic performance of ZnO NRs in the degradation of organic pollutants in subsequent stage. Practical implications A good reusability performance of metal/metal oxide-coupled ZnO NRs make ZnO NRs become a desirable photocatalyst material for the treatment of wastewater, which consists of both heavy metal ions and organic dyes. Originality/value Metal/metal oxide coupling onto the surface of ZnO NRs particles improved subsequent UV-assisted photocatalytic degradation of RhB dye.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3