Abstract
PurposeExamining research topics in a specific area such as accounting is important to both novice and veteran researchers. The present study aims to identify the research topics in the area of accounting and to investigate the research trends by finding hot and cold topics from all those identified ones in the field.Design/methodology/approachA new dependency-based method focusing on noun phrases, which efficiently extracts research topics from a large set of library data, was proposed. An AR(1) autoregressive model was used to identify topics that have received significantly more or less attention from the researchers. The data used in the study included a total of 4,182 abstracts published in six leading (or premier) accounting journals from 2000 to May 2019.FindingsThe study identified 48 important research topics across the examined period as well as eight hot topics and one cold topic from the 48 topics.Originality/valueThe research topics identified based on the dependency-based method are similar to those found with the technique of latent Dirichlet allocation latent Dirichlet allocation (LDA) topic modelling. In addition, the method seems highly efficient, and the results are easier to interpret. Last, the research topics and trends found in the study provide reference to the researchers in the area of accounting.
Subject
Library and Information Sciences,Information Systems
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献