Dynamic credit scoring using B & B with incremental-SVM-ensemble

Author:

Sun Jie,Li Hui,Chang Pei-Chann,Huang Qing-Hua

Abstract

Purpose – Previous researches on credit scoring mainly focussed on static modeling on panel sample data set in a certain period of time, and did not pay enough attention on dynamic incremental modeling. The purpose of this paper is to address the integration of branch and bound algorithm with incremental support vector machine (SVM) ensemble to make dynamic modeling of credit scoring. Design/methodology/approach – This new model hybridizes support vectors of old data with incremental financial data of corporate in the process of dynamic ensemble modeling based on bagged SVM. In the incremental stage, multiple base SVM models are dynamically adjusted according to bagged new updated information for credit scoring. These updated base models are further combined to generate a dynamic credit scoring. In the empirical experiment, the new method was compared with the traditional model of non-incremental SVM ensemble for credit scoring. Findings – The results show that the new model is able to continuously and dynamically adjust credit scoring according to corporate incremental information, which helps produce better evaluation ability than the traditional model. Originality/value – This research pioneered on dynamic modeling for credit scoring with incremental SVM ensemble. As time pasts, new incremental samples will be combined with support vectors of old samples to construct SVM ensemble credit scoring model. The incremental model will continuously adjust itself to keep good evaluation performance.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3