A comparison of the environmental impact of turboprop and turbofan-powered aircraft

Author:

Kilic Ugur

Abstract

Purpose This study aims to examine turboprop- and turbofan-powered aircraft, with the same seating capacity flying on the same route and trajectory, and investigate their environmental effects. Design/methodology/approach The integrated aircraft noise and emissions modeling platform developed by EUROCONTROL is used for the calculation of fuel burn, CO2, H2O and other gas emissions (NOx, SOx, CO, HC, soot and other trace compounds) for the per phase of flight. Findings The striking findings are that turboprop-powered aircraft offer lower required thrust, fuel consumption and total emissions for a short-haul flight, but turbofan-powered aircraft have lower particulate matter, CO and HC emissions than turboprop-powered aircraft. This study suggests that turboprop-powered aircraft are superior to turbofan-powered aircraft in terms of environmental impact for a short-haul flight. Practical implications The current research conducts comprehensively fuel consumption and amounts of emissions aspects of turboprop- and turbofan-powered aircraft for sustainable development of airlines by a versatile simulation approach and sheds light on airlines intending to create fleets. Originality/value The research offers a systematic aircraft selection for investigators, scientists, airline operators, policy analysts and legislators, by a comprehensive computer simulation method that acknowledges consistently the fuel consumption and detailed emissions analysis of turboprop- and turbofan-powered aircraft.

Publisher

Emerald

Subject

Aerospace Engineering

Reference29 articles.

1. Airfleets (2023), available at: www.airfleets.net/home/ (accessed 1 November 2022).

2. Estimation of aircraft turbofan engine exhaust emissions with environmental and economic aspects at a small-scale airport;Aircraft Engineering and Aerospace Technology,2022

3. Determination of fuel consumption and pollutant emissions with the real-time engine running data of aircrafts in the taxi-out period;Aircraft Engineering and Aerospace Technology,2022

4. Environmental and enviroeconomic impacts of COVID-19 pandemic on commercial flights;Aircraft Engineering and Aerospace Technology,2022

5. Environmental impact of pollutants from commercial aircrafts at Hasan Polatkan airport;Aircraft Engineering and Aerospace Technology,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3