Structural investigation of spunlace nonwoven

Author:

Jain Ravi Kumar,Sinha Sujit Kumar,Das Apurba

Abstract

Purpose Spunlacing is a promising nonwoven technology for the production of fabric with good handle and better structural integrity. Structural parameters such as pore size, thickness and number of binding point/entanglement between fibres are decisive for good mechanical and comfort properties of nonwoven fabrics. This study aims to focus on the effect of different process parameters on the structural change in spunlace fabrics. Design/methodology/approach Spunlacing is purely a mechanical bonding technology where high-speed jets of water strike a web to entangle the fibres. Different spunlace nonwoven structures were produced by varying processing parameters such as waterjet pressure, delivery speed, web mass and web composition as per four-factor, three-level Box–Behnken design. The effect of these parameters on the structural arrangement was studied using scanning electron microscopy. An attempt has also been made to study the changes in pore geometry and thickness of the fabrics by using response surface methodology with backward elimination. Findings Significant structural changes were observed with variation in water pressure, web mass and web composition. The test results showed that fabric produced at higher waterjet pressure has lower mean pore diameter and lower thickness. The variation in mean pore diameter and mean thickness due to waterjet pressure is around 26 and 34 per cent, respectively, at 95 per cent significance level. The web composition and web mass also significantly influence the mean pore diameter and thickness at 95 per cent significance level. There is a strong positive correlation (r = 0.523) between mean air permeability and mean pore diameter of fabric, and this correlation is significantly linear. A strong negative correlation (r = −0.627) is found between weight and air permeability of fabric. Research limitations/implications The delivery speed failed to show any significant effect; this is in contrary to the general expectation. Originality/value The effect of concurrent variation in waterjet pressure, web mass, delivery speed and web composition on the structure of spunlace nonwoven is studied, which was not reported in the literature. The effect of web composition on pore diameter of spunlace nonwoven is interesting finding. This study is expected to help in designing the spunlace nonwoven as per end uses and specifically for apparel application.

Publisher

Emerald

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Reference23 articles.

1. Mechanical and comfort properties of hydroentangled nonwoven from comber noil;Journal of Industrial Textile,2017

2. Air permeability & porosity in spun-laced fabrics;Fibres & Textiles,2006

3. Pore size distribution in textiles;Textile Research Journal,1949

4. Cheema, M.S. (2016), “Development of hydroentangled nonwoven structures for fashion garment”, PhD Thesis, University of Bolton, Bolton.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3