An artificial neural network (ANN) model for publication bias: a machine learning-based study on PubMed meta-analyses

Author:

Motahari-Nezhad HosseinORCID

Abstract

PurposeNo study has investigated the effects of different parameters on publication bias in meta-analyses using a machine learning approach. Therefore, this study aims to evaluate the impact of various factors on publication bias in meta-analyses.Design/methodology/approachAn electronic questionnaire was created according to some factors extracted from the Cochrane Handbook and AMSTAR-2 tool to identify factors affecting publication bias. Twelve experts were consulted to determine their opinion on the importance of each factor. Each component was evaluated based on its content validity ratio (CVR). In total, 616 meta-analyses comprising 1893 outcomes from PubMed that assessed the presence of publication bias in their reported outcomes were randomly selected to extract their data. The multilayer perceptron (MLP) technique was used in IBM SPSS Modeler 18.0 to construct a prediction model. 70, 15 and 15% of the data were used for the model's training, testing and validation partitions.FindingsThere was a publication bias in 968 (51.14%) outcomes. The established model had an accuracy rate of 86.1%, and all pre-selected nine variables were included in the model. The results showed that the number of databases searched was the most important predictive variable (0.26), followed by the number of searches in the grey literature (0.24), search in Medline (0.17) and advanced search with numerous operators (0.13).Practical implicationsThe results of this study can help clinical researchers minimize publication bias in their studies, leading to improved evidence-based medicine.Originality/valueTo the best of the author’s knowledge, this is the first study to model publication bias using machine learning.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3