Fully developed mixed convection flow in a vertical microtube with time periodic heating boundary condition

Author:

Jha Basant Kumar,Aina Babatunde

Abstract

Purpose The purpose of this paper is to investigate fully developed mixed convection flow in the steady-periodic regime for a Newtonian fluid in a vertical microtube in the presence of velocity slip and temperature jump, which has not been accounted for in the literature. Design/methodology/approach To achieve this objective, the governing equations for the problem are separated into steady and oscillatory components using separation of variable method; this gives a pair of independent boundary value problems. This is then solved along with its boundary conditions and constraint equations using the method of undetermined coefficient. The exact solutions of momentum and energy equations are obtained under the velocity slip and temperature jump conditions. Findings The significant result from the study is that increase in rarefaction parameter as well as fluid–wall interaction parameter decreases the oscillation amplitude of the dimensionless velocity. Furthermore, it was found that the product of dimensionless frequency and Prandtl number initiate a strong convection current inside the microtube. Practical implications Such type of study may be used on the determination of the thermal and tangential momentum accommodation coefficients and be applicable to the designs and fabrications of microheat exchanger. Moreover, it provides the possibility to get a bench mark for numerical solvers with reference to basic flow configuration. Originality/value These solutions generally deserve great attention, since the application of a magnetic field has been found to be effective tool in controlling the convection current. The current work is aimed as an extension of the previous analytical studies to prove some insight into a number of industrial applications, which use similar configurations.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference36 articles.

1. Amplitude effect on convection induced by time periodic boundary conditions;International Journal of Heat and Mass Transfer,1996

2. Gaseous flow in microchannels, application of micro-fabrication to fluid mechanics;ASME Fluids Engineering Division,1994

3. Mixed convection in a vertical microannulus between two concentric microtubes;ASME Journal of Heat Transfer,2009

4. Thermally optimum spacing of vertical natural convection cooled parallel plates;ASME Journal of Heat Transfer,1984

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3