Abstract
Purpose
The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve maximum material removal rate (MRR) and minimum surface roughness.
Design/methodology/approach
Data of a few experiments as per the Taguchi’s orthogonal array are considered for achieving maximum MRR and minimum surface roughness (Ra) of the Inconel718. Analysis of variance is performed to understand the statistical significance of AWJM input process parameters.
Findings
Empirical relations are developed for MRR and Ra in terms of the AWJM process parameters and demonstrated their adequacy through comparison of test results.
Research limitations/implications
The signal-to-noise ratio transformation should be applied to take in to account the scatter in the repetition of tests in each test run. But, many researchers have adopted this transformation on a single output response of each test run, which has no added advantage other than additional computational task. This paper explains the impact of insignificant process parameter in selection of optimal process parameters. This paper demands drawbacks and complexity in existing theories prior to use new algorithms.
Practical implications
Taguchi approach is quite simple and easy to handle optimization problems, which has no practical implications (if it handles properly). There is no necessity to hunt for new algorithms for obtaining solution for multi-objective optimization AWJM process.
Originality/value
This paper deals with a case study, which demonstrates the simplicity of the Taguchi approach in solving multi-objective optimization problems with a few number of experiments.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献