Effect of the aligned magnetic field on the boundary layer analysis of magnetic-nanofluid over a semi-infinite vertical plate with ferrous nanoparticles

Author:

Ashwinkumar G.P.ORCID,Sulochana C.,Samrat S.P.

Abstract

Purpose The purpose of this paper is to investigate the momentum, heat and mass transfer characteristics of magnetic-nanofluid flow past a vertical plate embedded in a porous medium filled with ferrous nanoparticles. The analysis is carried out in the presence of pertinent physical parameters such as aligned magnetic field, thermal radiation, chemical reaction, radiation absorption, heat source/sink. Design/methodology/approach The flow governing PDEs are transformed into ODEs using appropriate conversions. Further, the set of ODEs is solved analytically using the perturbation technique. The flow quantities such as velocity, thermal and concentration fields are discussed under the influence of above-mentioned pertinent physical parameters with the assistance of graphical depictions. Moreover, the friction factor, local Nusselt and Sherwood number are discussed in tabular form. Findings The results indicate that flow and thermal transport phenomenon is more effective in the case of the aligned magnetic field as compared with the transverse magnetic field. Also, the nanoparticle volume fraction plays a vital role in controlling the wall friction and heat transfer performance. The validation of the obtained results is done by comparing them with the results of various numerical techniques, and hence found them in excellent agreement. Originality/value In present days, the external magnetic fields are very effective to set the thermal and physical properties of magnetic-nanofluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of magnetic-nanofluids and makes it aeolotropic. With this incentive, the authors investigated the flow and heat transfer characteristics of electrically conducting magnetic-nanofluids over a vertical surface embedded in a porous medium. The authors discussed the dual nature of ferrous-water nanofluid in the presence of aligned magnetic field and transverse magnetic field cases. The influence of several physical parameters on velocity, thermal and concentration field converses with the succour of graphs.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modelling and Simulation

Reference46 articles.

1. Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer;Journal of Magnetism and Magnetic Materials,2016

2. Effect of chemical reaction and radiation absorption on the unsteady MHD free convection Couette flow in a vertical channel filled with porous materials;Afrika Matematika,2016

3. Buoyancy induced model for the flow of 36nm alumina-water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity;Powder Technology,2016

4. Effect of nonlinear thermal radiation on non-aligned bio-convective stagnation point flow of a magnetic-nanofluid over a stretching sheet;Alexandria Engineering Journal,2016

5. Heat and mass transfer phenomena;Journal of Magnetism and Magnetic Materials,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3