Multi-objective recognition based on deep learning

Author:

Liu Xin,Wu Junhui,Man Yiyun,Xu Xibao,Guo Jifeng

Abstract

Purpose With the continuous development of aerospace technology, space exploration missions have been increasing year by year, and higher requirements have been placed on the upper level rocket. The purpose of this paper is to improve the ability to identify and detect potential targets for upper level rocket. Design/methodology/approach Aiming at the upper-level recognition of space satellites and core components, this paper proposes a deep learning-based spatial multi-target recognition method, which can simultaneously recognize space satellites and core components. First, the implementation framework of spatial multi-target recognition is given. Second, by comparing and analyzing convolutional neural networks, a convolutional neural network model based on YOLOv3 is designed. Finally, seven satellite scale models are constructed based on systems tool kit (STK) and Solidworks. Multi targets, such as nozzle, star sensor, solar,etc., are selected as the recognition objects. Findings By labeling, training and testing the image data set, the accuracy of the proposed method for spatial multi-target recognition is 90.17%, which is improved compared with the recognition accuracy and rate based on the YOLOv1 model, thereby effectively verifying the correctness of the proposed method. Research limitations/implications This paper only recognizes space multi-targets under ideal simulation conditions, but has not fully considered the space multi-target recognition under the more complex space lighting environment, nutation, precession, roll and other motion laws. In the later period, training and detection can be performed by simulating more realistic space lighting environment images or multi-target images taken by upper-level rocket to further verify the feasibility of multi-target recognition algorithms in complex space environments. Practical implications The research in this paper validates that the deep learning-based algorithm to recognize multiple targets in the space environment is feasible in terms of accuracy and rate. Originality/value The paper helps to set up an image data set containing six satellite models in STK and one digital satellite model that simulates spatial illumination changes and spins in Solidworks, and use the characteristics of spatial targets (such as rectangles, circles and lines) to provide prior values to the network convolutional layer.

Publisher

Emerald

Subject

Aerospace Engineering

Reference22 articles.

1. Vision-based state estimation for non-cooperative targets in space,2019

2. Segmentation and description of natural outdoor scenes;Image and Vision Computing,2005

3. Noise estimation for color edge extraction;Robust Computer Vision: Quality of Vision Algorithms,1992

4. Fast R-CNN,2015

5. Rich feature hierarchies for accurate object detection and semantic segmentation,2014

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3