Abstract
PurposeIn response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approachBased on the PLS-160 wheel-rail adhesion simulation test rig, the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip. Through statistical analysis of multiple sets of experimental data, the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained, and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed. The study analyzes the utilization of traction/braking adhesion, as well as adhesion redundancy, for different medium under small creepage and large slip conditions. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived.FindingsWhen the third-body medium exists on the rail surface, the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance. Compared with the current adhesion control strategy of small creepage, adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization, thereby ensuring the traction/braking performance and operation safety of the train.Originality/valueMost existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions, without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train. Therefore, there is a risk of traction overspeeding/braking skidding. This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.
Reference23 articles.
1. Investigation of adhesion recovery phenomenon using a scaled roller-rig;Vehicle System Dynamics,2019
2. Full-scale testing of low adhesion effects with small amounts of water in the wheel/rail interface;Tribology International,2020
3. Experimental study on large creepage adhesion of wheel/rail braking at 400 km·h-1 (I)-Adhesion characteristics under water medium;China Railway Science,2022
4. An experimental study of high speed wheel-rail adhesion characteristics in wet condition on full scale roller rig;Wear,2019
5. Experimental study on large creepage adhesion of wheel/rail braking at 400 km·h-1 (I)-Adhesion characteristics under water medium;China Railway Science,2022