Effects of processing conditions on mechanical properties of PLA printed parts

Author:

Behzadnasab Morteza,Yousefi Ali Akbar,Ebrahimibagha Dariush,Nasiri Farahnaz

Abstract

Purpose With recent advances in additive manufacturing (AM), polymer-based three-dimensional (3D) printers are available for relatively low cost and have found their way even in domestic and educational uses. However, the optimum conditions for processing and post-processing of different materials are yet to be determined. The purpose of this paper is to examine the effects of printing temperature, pattern and annealing conditions on tensile strength and modulus of samples printed with polylactic acid (PLA). Design/methodology/approach This study focuses on fused deposition modelling according to ISO/ASTM 52900 material extrusion AM. To print parts with maximum mechanical properties, the printing variables must be optimised. To determine the printing and annealing condition on physical and mechanical properties of PLA-based parts, dogbone-shaped tensile samples were printed at four different nozzle temperatures and five different filling patterns embedded in a 3D printing software. The samples were further annealed at three different temperatures for three different time intervals. The mechanical properties were evaluated and the changes in mechanical properties were analysed with the help of rheometrical measurements. Findings The results showed that printing condition has a significant influence on final properties, for example, the strain at break value increases with increasing nozzle temperature from 34 to 56 MPa, which is close to the value of the injected sample, namely, 65 MPa. While tensile strength increases with printing temperature, the annealing process has negative effects on the mechanical properties of samples. Originality/value The authors observed that traditional findings in polymer science, for example, the relationship between processing and annealing temperature, must be re-evaluated when applied in 3D printing because of major differences in processing conditions resulting from the layer-by-layer manufacturing.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference28 articles.

1. Development of rapid tooling using fused deposition modeling: a review;Rapid Prototyping Journal,2016

2. Processing of poly (lactic acid): characterization of chemical structure, thermal stability and mechanical properties;Polymer Degradation and Stability,2010

3. A first approach to study the thermal annealing effect of an object made of poly-lactic acid (PLA) produced by fused deposition modeling (FDM) technology,2016

4. Mechanical strength of welding zones produced by polymer extrusion additive manufacturing;Additive Manufacturing,2017

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3