Personalized femoral component design and its direct manufacturing by selective laser melting

Author:

Song Changhui,Yang Yongqiang,Wang Yunda,Yu Jia-kuo,Wang Di

Abstract

Purpose This paper aims to achieve rapid design and manufacturing of personalized total knee femoral component. Design/methodology/approach On the basis of a patient’s bone model, a matching personalized knee femoral component was rapidly designed with the help of computer-aided design method, then manufactured directly and rapidly by selective laser melting (SLM). Considered SLM as manufacturing technology, CoCrMo-alloyed powder that meets ASTM F75 standard is made of femoral component under optimal processing parameters. The feasibility of SLM forming through conducting experimental test of mechanical properties, surface roughness, biological corrosion resistance was analyzed. Findings The result showed that the tensile strength, yield strength, hardness and biological corrosion resistance of CoCrMo-alloyed personalized femoral component fulfill knee joint prosthesis standard through post-processing. Originality/value Traditional standardized prosthesis implantation manufacturing approach was changed by computer-aided design and personalized SLM direct manufacturing, and provided a new way for personalized implanted prosthesis to response manufacturing rapidly.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference30 articles.

1. Rapid manufacture of removable partial denture frameworks;Rapid Prototyping Journal,2006

2. Integration of image guidance and rapid prototyping technology in craniofacial surgery;International Journal of Oral and Maxillofacial Surgery,2013

3. Production of customized hip stem prostheses – a comparison between conventional machining and electron beam melting (EBM);Rapid Prototyping Journal,2013

4. The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks;Proceedings of The Institution of Mechanical Engineers,2005

5. State-of-the-art in empirical modelling of rapid prototyping processes;Rapid Prototyping Journal,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3