Author:
Wiberg Anton,Persson Johan,Ölvander Johan
Abstract
Purpose
The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection, into a common optimisation framework.
Design/methodology/approach
A design methodology is formulated and tested in a case study. The outcome of the case study is analysed by comparing the obtained results with alternative designs achieved by using other design methods. The design process in the case study and the potential of the method to be used in different settings are also discussed. Finally, the work is concluded by stating the main contribution of the paper and highlighting where further research is needed.
Findings
The proposed method is implemented in a novel framework which is applied to a physical component in the case study. The component is a structural aircraft part that was designed to minimise weight while respecting several static and fatigue structural load cases. An addition goal is to minimise the manufacturing cost. Designs optimised for manufacturing by two different AM machines (EOS M400 and Arcam Q20+), with and without post-processing (centrifugal finishing) are considered. The designs achieved in this study show a significant reduction in both weight and cost compared to one AM manufactured geometry designed using more conventional methods and one design milled in aluminium.
Originality/value
The method in this paper allows for the holistic design and optimisation of components while considering manufacturability, cost and component functionality. Within the same framework, designs optimised for different setups of AM machines and post-processing can be automatically evaluated without any additional manual work.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference47 articles.
1. On design for additive manufacturing: evaluating geometrical limitations;Rapid Prototyping Journal,2015
2. Flexible and robust CAD models for design automation;Advanced Engineering Informatics,2012
3. Toward integrated design of additive manufacturing through a process development model and multi-objective optimization;The International Journal of Advanced Manufacturing Technology,2018
4. Computational design synthesis of additive manufactured multi-flow nozzles;Additive Manufacturing,2020
5. Additive manufacturing methods and modelling approaches: a critical review;The International Journal of Advanced Manufacturing Technology,2016
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献