Framework for effective additive manufacturing education: a case study of South African universities

Author:

Alabi Micheal Omotayo,de Beer Deon Johan,Wichers Harry,Kloppers Cornelius P.

Abstract

Purpose In this era of Fourth Industrial Revolution, also known as Industry 4.0, additive manufacturing (AM) has been recognized as one of the nine technologies of Industry 4.0 that will revolutionize different sectors (such as manufacturing and industrial production). Therefore, this study aims to focus on “Additive Manufacturing Education” and the primary aim of this study is to investigate the impacts of AM technology at selected South African universities and develop a proposed framework for effective AM education using South African universities as the case study. Design/methodology/approach Quantitative research approach was used in this study, that is, a survey (questionnaire) was designed specifically to investigate the impacts of the existing AM technology/education and the facilities at the selected South African universities. The survey was distributed to several students (undergraduate and postgraduate) and the academic staffs within the selected universities. The questionnaire contained structured questions based on five factors/variables and followed by two open-ended questions. The data were collected and analyzed using statistical tools and were interpreted accordingly (i.e. both the closed and open-ended questions). The hypotheses were stated, tested and accepted. In conclusion, the framework for AM education at the universities was developed. Findings Based on different literature reviewed on “framework for AM technology and education”, there is no specific framework that centers on AM education and this makes it difficult to find an existing framework for AM education to serve as a landscape to determine the new framework for AM education at the universities. Therefore, the results from this study made a significant contribution to the body of knowledge in AM, most especially in the area of education. The significant positive responses from the respondents have shown that the existing AM in-house facilities at the selected South African universities is promoting AM education and research activities. This study also shows that a number of students at the South African universities have access to AM/3D printing lab for design and research purposes. Furthermore, the findings show that the inclusion of AM education in the curriculum of both the science and engineering education is South Africa will bring very positive results. The introduction of a postgraduate degree in AM such as MSc or MEng in AM will greatly benefit the South African universities and different industries because it will increase the number of AM experts and professionals. Through literature review, this study was able to identify five factors (which includes sub-factors) that are suitable for the development of a framework for AM education, and this framework is expected to serve as base-line or building block for other universities globally to build/develop their AM journey. Research limitations/implications The survey was distributed to 200 participants and 130 completed questionnaires were returned. The target audience for the survey was mainly university students (both undergraduate and postgraduate) and the academics who have access to AM machines or have used the AM/3D printing lab/facilities on their campuses for both academic and research purposes. Therefore, one of the limitations of the survey is the limited sample size; however, the sample size for this survey is considered suitable for this type of research and would allow generalization of the findings. Nevertheless, future research on this study should use larger sample size for purpose of results generalization. In addition, this study is limited to quantitative research methodology; future study should include qualitative research method. Irrespective of any existing or developed framework, there is always a need to further improve the existing framework, and therefore, the proposed framework for AM education in this study contained only five factors/variables and future should include some other factors (AM commercialization, AM continuous Improvement, etc.) to further enhance the framework. Practical implications This study provides the readers and researchers within the STEM education, industry or engineering education/educators to see the importance of the inclusion of AM in the university curriculum for both undergraduate and postgraduate degrees. More so, this study serves as a roadmap for AM initiative at the universities and provides necessary factors to be considered when the universities are considering or embarking on AM education/research journey at their universities. It also serves as a guideline or platform for various investors or individual organization to see the need to invest in AM education. Originality/value The contribution of this study towards the existing body of knowledge in AM technology, specifically “AM education research” is in the form of proposed framework for AM education at the universities which would allow the government sectors/industry/department/bodies and key players in AM in South Africa and globally to see the need to invest significantly towards the advancement of AM technology, education and research activities at various universities.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference69 articles.

1. Akinlabi, E. (2016), “Additive manufacturing advances in academia and teaching. A presentation at NSTF light-based technologies innovation forum”, available at: www.nstf.org.za/wp-content/uploads/2016/03/Akinlabi-slides.pdf (accessed 24 October 2018).

2. Applications of additive manufacturing at selected South African universities: promoting additive manufacturing education;Rapid Prototyping Journal,2019

3. Anthony, C. (2018), “Auburn, partner organizations sign agreements for additive research centres”, available at: www.eng.auburn.edu/news/2018/07/additive-signing-ceremonies.html (accessed 25 September 2018).

4. Biddix, P.J. (2009), “Writing research questions”, available at: https://researchrundowns.com/intro/writing-research-questions/ (accessed 24 October 2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3