Multi‐objective flow shop scheduling using hybrid simulated annealing

Author:

Dhingra Ashwani,Chandna Pankaj

Abstract

PurposeIn order to achieve excellence in manufacturing, goals like lean, economic and quality production with enhanced productivity play a crucial role in this competitive environment. It also necessitates major improvements in generally three primary technical areas: variation reduction, equipment reliability, and production scheduling. Complexity of the real world scheduling problems also increases with interactive multiple decision‐making criteria. This paper aims to deal with multi‐objective flow shop scheduling problems, including sequence dependent set up time (SDST). The paper also aims to consider the objective of minimizing the weighted sum of total weighted tardiness, total weighted earliness and makespan simultaneously. It proposes a new heuristic‐based hybrid simulated annealing (HSA) for near optimal solutions in a reasonable time.Design/methodology/approachSix modified NEH's based HSA algorithms are proposed for efficient scheduling of jobs in a multi‐objective SDST flow shop. Problems of up to 200 jobs and 20 machines are tested by the proposed HSA and a defined relative percentage improvement index is used for analysis and comparison of different MNEH's based hybrid simulated annealing algorithms.FindingsFrom the results, it has been derived that performance of SA_EWDD (NEH) up to ten machines' problems, and SA_EPWDD (NEH) up to 20 machines' problems, were better over others especially for large sized SDST flow shop scheduling problems for the considered multi‐objective fitness function.Originality/valueHSA and multi‐objective decision making proposed in the present work is a modified approach in the area of SDST flow shop scheduling.

Publisher

Emerald

Subject

Organizational Behavior and Human Resource Management,General Business, Management and Accounting

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3