Simulation and experiment on pressure field characteristics of hydrostatic hydrodynamic hybrid thrust bearings

Author:

Shao Jun-peng,Liu Guang-dong,Yu Xiaodong

Abstract

PurposeThis paper aims to improve the bearing capacity of hydrostatic thrust bearing under working conditions of high speed and heavy load; a new wedge-shaped structure opened on an edge of oil seal is put forward, the loss and insufficiency for hydrostatic bearing capacity are made up by using dynamic pressure, and then, hydrostatic hydrodynamic lubrication is realized.Design/methodology/approachOil film three-dimensional models of unidirectional and bi-directional hydrostatic hydrodynamic oil pad are established by using UG. The oil film pressure fields of two kinds of oil pad are simulated by using ANSYS ICEM CFD and ANSYS CFX; the pressure fields distribution characteristics are obtained, and the effects of workbench rotary speed and bearing weight on pressure field are analyzed. Also, the experimental verification is made.FindingsThe results demonstrate that with an increase in workbench rotary speed, the oil film pressure of two kinds of hybrid oil pad increases gradually, and the maximum pressure of the bi-directional one accounts for 95 per cent of the unidirectional one when the load is constant. With an increase in load, the oil film pressure of two kinds of hybrid oil pad increases gradually, the difference between them is 9.4 per cent under the condition of load of 25twhen the rotary speed is constant.Originality/valueThe paper can provide theoretical basis for a structure design of hybrid thrust bearing under different rotary speed and load conditions, and compensate the shortage of static pressure-bearing capacity by using dynamic pressure, improve the stability of vertical CNC machining equipment.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference19 articles.

1. Simulation of dynamic effects on hydrostatic bearings and membrane restrictors;Production Engineering,2007

2. Bearing characteristics study on liquid hybrid bearing based on CFD;Manufacturing Technology and Machine Tools,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3