Cloud-based secure data storage and access control for internet of medical things using federated learning

Author:

Bhansali Priyanka Kumari,Hiran Dilendra,Kothari Hemant,Gulati Kamal

Abstract

Purpose The purpose of this paper Computing is a recent emerging cloud model that affords clients limitless facilities, lowers the rate of customer storing and computation and progresses the ease of use, leading to a surge in the number of enterprises and individuals storing data in the cloud. Cloud services are used by various organizations (education, medical and commercial) to store their data. In the health-care industry, for example, patient medical data is outsourced to a cloud server. Instead of relying onmedical service providers, clients can access theirmedical data over the cloud. Design/methodology/approach This section explains the proposed cloud-based health-care system for secure data storage and access control called hash-based ciphertext policy attribute-based encryption with signature (hCP-ABES). It provides access control with finer granularity, security, authentication and user confidentiality of medical data. It enhances ciphertext-policy attribute-based encryption (CP-ABE) with hashing, encryption and signature. The proposed architecture includes protection mechanisms to guarantee that health-care and medical information can be securely exchanged between health systems via the cloud. Figure 2 depicts the proposed work's architectural design. Findings For health-care-related applications, safe contact with common documents hosted on a cloud server is becoming increasingly important. However, there are numerous constraints to designing an effective and safe data access method, including cloud server performance, a high number of data users and various security requirements. This work adds hashing and signature to the classic CP-ABE technique. It protects the confidentiality of health-care data while also allowing for fine-grained access control. According to an analysis of security needs, this work fulfills the privacy and integrity of health information using federated learning. Originality/value The Internet of Things (IoT) technology and smart diagnostic implants have enhanced health-care systems by allowing for remote access and screening of patients’ health issues at any time and from any location. Medical IoT devices monitor patients’ health status and combine this information into medical records, which are then transferred to the cloud and viewed by health providers for decision-making. However, when it comes to information transfer, the security and secrecy of electronic health records become a major concern. This work offers effective data storage and access control for a smart healthcare system to protect confidentiality. CP-ABE ensures data confidentiality and also allows control on data access at a finer level. Furthermore, it allows owners to set up a dynamic patients health data sharing policy under the cloud layer. hCP-ABES proposed fine-grained data access, security, authentication and user privacy of medical data. This paper enhances CP-ABE with hashing, encryption and signature. The proposed method has been evaluated, and the results signify that the proposed hCP-ABES is feasible compared to other access control schemes using federated learning.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference34 articles.

1. A scalable attribute-based access control scheme with flexible delegation cum sharing of access privileges for cloud storage;IEEE Transactions on Cloud Computing,2020

2. e Health cloud security challenges: a survey;Journal of Healthcare Engineering,2019

3. Ciphertext-policy attribute based encryption,2008

4. Cipher text-policy attribute-based signcryption with verifiable outsourced designcryption for sharing personal health records;IEEE Access,2018

5. A secure data sharing using IDSS CP-ABE in cloud storage,2022

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data augmentation and generative machine learning on the cloud platform;International Journal of Information Technology;2024-08-12

2. FLHB-AC: Federated Learning History-Based Access Control Using Deep Neural Networks in Healthcare System;Journal of Information Systems and Telecommunication (JIST);2024-06-24

3. Retraction notice: Cloud-based secure data storage and access control for internet of medical things using federated learning;International Journal of Pervasive Computing and Communications;2024-05-31

4. Blockchain-powered Healthcare: Revolutionizing Security and Privacy in IoT-based Systems;2024 International Conference on Computational Intelligence and Computing Applications (ICCICA);2024-05-23

5. Federated Learning for Secure Healthcare Image Analysis in the Cloud;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3