Author:
Shilbayeh Samar,Grassa Rihab
Abstract
Purpose
Bank creditworthiness refers to the evaluation of a bank’s ability to meet its financial obligations. It is an assessment of the bank’s financial health, stability and capacity to manage risks. This paper aims to investigate the credit rating patterns that are crucial for assessing creditworthiness of the Islamic banks, thereby evaluating the stability of their industry.
Design/methodology/approach
Three distinct machine learning algorithms are exploited and evaluated for the desired objective. This research initially uses the decision tree machine learning algorithm as a base learner conducting an in-depth comparison with the ensemble decision tree and Random Forest. Subsequently, the Apriori algorithm is deployed to uncover the most significant attributes impacting a bank’s credit rating. To appraise the previously elucidated models, a ten-fold cross-validation method is applied. This method involves segmenting the data sets into ten folds, with nine used for training and one for testing alternatively ten times changeable. This approach aims to mitigate any potential biases that could arise during the learning and training phases. Following this process, the accuracy is assessed and depicted in a confusion matrix as outlined in the methodology section.
Findings
The findings of this investigation reveal that the Random Forest machine learning algorithm superperforms others, achieving an impressive 90.5% accuracy in predicting credit ratings. Notably, our research sheds light on the significance of the loan-to-deposit ratio as a primary attribute affecting credit rating predictions. Moreover, this study uncovers additional pivotal banking features that intensely impact the measurements under study. This paper’s findings provide evidence that the loan-to-deposit ratio looks to be the purest bank attribute that affects credit rating prediction. In addition, deposit-to-assets ratio and profit sharing investment account ratio criteria are found to be effective in credit rating prediction and the ownership structure criterion came to be viewed as one of the essential bank attributes in credit rating prediction.
Originality/value
These findings contribute significant evidence to the understanding of attributes that strongly influence credit rating predictions within the banking sector. This study uniquely contributes by uncovering patterns that have not been previously documented in the literature, broadening our understanding in this field.
Reference54 articles.
1. The determinants of credit ratings in the United Kingdom insurance industry;Journal of Business Finance and Accounting,2003
2. Fast discovery of association rules,1996
3. The effect of corporate governance on firm’s credit ratings: further evidence using governance score in the United States;Accounting and Finance,2012
4. Enhanced credit card fraud detection model using machine learning;Electronics,2022
5. Effects of family and foreign ownership structure on Jordanian credit risk assessments;International Research Journal of Finance and Economics,2012