Research on the influence of the discharge breakdown process on the crater formation during EDM

Author:

Zhang WenchaoORCID

Abstract

PurposeThis paper aims to study the breakdown, oscillation and vanishing of the discharge channel and its influence on crater formation with simulation and experimental methods. The experiment results verified the effect of the oscillating characteristics of the discharge channel on the shape of the crater.Design/methodology/approachA mathematical model that considers the magnetohydrodynamics (MHD) and the discharge channel oscillation was established. The micro process of discharging based on magnetic-fluid coupling during electrical discharge machining (EDM) was simulated. The breakdown, oscillation and vanishing stage of the discharge channel were analyzed, and the crater after machining was obtained. Finally, a single-pulse discharge experiment during EDM was conducted to verify the simulation model.FindingsDuring the breakdown of the discharge channel, the electrons move towards the center of the discharge channel. The electrons at the end diverge due to the action of water resistance, making the discharge channel appear wide at both ends and narrow in the middle, showing the pinch effect. Due to the mutual attraction of electrons and positive ions in the channel, the transverse oscillation of the discharge channel is shown on the micro level. Therefore, the position of the discharge point on the workpiece changes. The longitudinal oscillation in the discharge channel causes the molten pool on the workpiece to be ejected due to the changing pressure. The experimental results show that the shape of the crater is similar to that in the simulation, which verifies the correctness of the simulation results and also proves that the crater generated by the single pulse discharge is essentially the result of the interaction between transverse wave and longitudinal wave.Originality/valueIn this paper, the simulation of the discharge breakdown process in EDM was carried out, and a new mathematical model that considers the MHD and the discharge channel oscillation was established. Based on the MHD module, the discharge breakdown, oscillation and vanishing stages were simulated, and the velocity field and pressure field in the discharge area were obtained.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference18 articles.

1. Advanced electric discharge machining of stainless steels: assessment of the state of the art, gaps and future prospect;Journal of Materials,2019

2. Modeling of a single resistance capacitance pulse discharge in micro-electro discharge machining;Journal of Manufacturing Science and Engineering,2005

3. A novel approach to plasma channel radius determination and numerical of electrical discharge machining process;Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020

4. Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass;Journal of Non-crystalline Solids,1999

5. Spectroscopic measurement of arc plasma diameter in EDM;CIRP Annals - Manufacturing Technology,2008

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3