Abstract
PurposeAs an efficient self-healing intelligent material, the encapsulation-based self-healing resin mineral composite (SHC) has a broad application prospect.Design/methodology/approachAiming at the cracking performance of SHC, the dynamic load condition is employed to replace the traditional static load condition, the initial damage of the material is considered and the triggered cracking process and influencing factors of SHC are analyzed based on the extended finite element method (XFEM). In addition, the mechanism of matrix cracking and microcapsule triggered cracking process is explained from the microscopic point of view, and the cracking performance conditions of SHC are studied. On this basis, the response surface regression analysis method is used to obtain a second-order polynomial model of the microcapsule crack initiation stress, the interface bonding strength and the matching relationship between elastic modulus. Therefore, the model could be used to predict the cracking performance parameters of the microcapsule.FindingsThe interfacial bonding strength has an essential effect on the triggered cracking of the microcapsule. In order to ensure that the microcapsule can be triggered cracking normally, the design strength should meet the following relationship, that is crack initiation stress of microcapsule wall < crack initiation stress of matrix < interface bonding strength. Moreover, the matching relationship between elastic modulus has a significant influence on the triggered cracking of the microcapsule.Originality/valueThe results provide a theoretical basis for further oriented designing of the cracking performance of microcapsules.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献