Frequency-domain preliminary assessment of coupled site and SSI effects according to the Algerian seismic provisions

Author:

Beneldjouzi Mohamed,Hadid Mohamed,Laouami Nasser

Abstract

Purpose Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI effects in conjunction with local soil condition effects on the seismic response of typical multistory low- to mid-rise–reinforced concrete (RC) buildings resting on Algerian regulatory design sites through a global explicit transfer function (TF). Design/methodology/approach A preliminary quantification of SSI effects associated with site effects is carried out through a frequency-domain solution based on the concept of rock-to-soil surface displacement TF performed for each design site category. It results from the combination of the TFs of structure, foundation and soil and reflects how seismic waves are amplified due to changes in the geological contrast between the rock and overlying soil deposits. As well, response modification factors, denoting displacement ratios of the building responses within the flexible and site-structure conditions with respect to the fixed-base one, are carried out. Findings In the context of Algerian seismic regulation, the study provides a clear vision of how and when site or SSI effects are expected to be influential, as opposed to the fixed-base hypothesis still retained by the current regulation. This helps engineers to be aware of the extent of the expected seismic damage. Research limitations/implications The research applies to low- to mid-rise RC buildings within the Algerian seismic regulation, but it may also be expanded to other examples that fall under other seismic regulations. Practical implications The response modification ratio is a quantitative approach to assessing response fluctuations. It draws attention to how the roof level drift varies depending on the condition. These results can be used as numerical parameters in structural seismic design when the structure is comparable because they provide useful information about how the two phenomena interact with the structure. Originality/value The study goes beyond particular situations dealing with site specific and offers effective indicators and quantitative evaluation of combined site and SSI effects according to the current national seismic provisions, where no indication about site or SSI effects exists.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference35 articles.

1. Structural control considering soil-structure interaction effects;Earthquake Engineering & Structural Dynamics,1994

2. Minimum design loads for buildings and other structures;American Society of Civil Engineers (ASCE),2016

3. Site effects and soil-structure interaction estimated in Golcuk, Turkey, during the 1999 Kocaeli earthquake,2006

4. Site effects and soil-structure interaction in The Valley of Mexico;Soil Dynamics and Earthquake Engineering,1998

5. A stochastic based approach for a new site classification method: application to the Algerian seismic code;Earthquake Engineering and Engineering Vibration,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Displacement-Based Methodology for Seismic Analysis of a Retrofitted Substandard Low-Rise RC Building Using Conditional Mean Spectra;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3