Author:
Dahmani Massicilia,Seghir Abdelghani,Issaadi Nabil,Amiri Ouali
Abstract
Purpose
This study aims to propose a numerical modeling procedure for response analysis of elastic body floating in water and submitted to regular waves. An equivalent simplified mechanical single-degree-of-freedom system allowing to reproduce the heave movements is first developed, then the obtained lumped characteristics are used for elastic analysis of the floating body in heave motion.
Design/methodology/approach
First, a two-dimensional numerical model of a rigid floating body in a wave tank is implemented under DualSPHysics, an open source computational fluid dynamics (CFD) code based on smoothed particle hydrodynamics method. Then, the obtained results are exploited to derive an equivalent mechanical mass-spring-damper model. Finally, estimated equivalent characteristics are used in a structural finite element modeling of the considered body assuming elastic behavior.
Findings
Obtained results concerning the floating body displacements are represented and validated using existing experimental data in the literature. Wave forces acting on the body are also evaluated. It was found that for regular waves, it is possible to replace the complex CFD refined model by an equivalent simplified mechanical system which makes easy the use of structural finite element analysis.
Originality/value
The originality of this work lies in the proposed procedure to evaluate the mechanical properties of the equivalent elastic system. This allows to couple two different software tools and to take advantages of their features.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering