Predicting student performance in a blended learning environment using learning management system interaction data

Author:

Fahd Kiran,Miah Shah Jahan,Ahmed Khandakar

Abstract

PurposeStudent attritions in tertiary educational institutes may play a significant role to achieve core values leading towards strategic mission and financial well-being. Analysis of data generated from student interaction with learning management systems (LMSs) in blended learning (BL) environments may assist with the identification of students at risk of failing, but to what extent this may be possible is unknown. However, existing studies are limited to address the issues at a significant scale.Design/methodology/approachThis study develops a new approach harnessing applications of machine learning (ML) models on a dataset, that is publicly available, relevant to student attrition to identify potential students at risk. The dataset consists of the data generated by the interaction of students with LMS for their BL environment.FindingsIdentifying students at risk through an innovative approach will promote timely intervention in the learning process, such as for improving student academic progress. To evaluate the performance of the proposed approach, the accuracy is compared with other representational ML methods.Originality/valueThe best ML algorithm random forest with 85% is selected to support educators in implementing various pedagogical practices to improve students’ learning.

Publisher

Emerald

Subject

Computer Science Applications,Information Systems,Software

Reference27 articles.

1. So close, yet so far: predictors of attrition in college seniors;J Coll Stud Dev,1998

2. Re-evaluating the university attrition statistic: a longitudinal follow-up study;J Adolesc Res,2006

3. The problem of student attrition in higher education: an alternative perspective;J Furth High Educ,2016

4. Student academic performance prediction using supervised learning techniques;Int J Emerg Technol Learn,2019

5. An examination of the impact of early intervention on learning outcomes of at-risk students;Res High Educ,2014

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3