Assessing the performance and productivity of labour in building construction projects through the application of work-based training practices

Author:

Manoharan Kesavan,Dissanayake Pujitha,Pathirana Chintha,Deegahawature Dharsana,Silva Renuka

Abstract

Purpose Sources highlight that lack of systematic labour training components results in low performance and productivity of labour, which leads the construction industry of many countries to face various challenges. This study aims to quantify the variations in the performance and productivity levels of labour in building construction projects through the applications of effective work-based training components. Design/methodology/approach A comprehensive literature review and a series of experts’ discussions with action-oriented communication approaches were conducted to develop a set of practices related to labour training, performance assessment and productivity measurements within a framework. The developed practices were applied to around 100 labourers working on nine building construction projects through a construction supervisory training programme. Findings The study presents the detailed patterns of the significant changes in labour performance and productivity levels. The majority of trained labourers have grown to perform the work process with some relevant theoretical and operational knowledge and skills. The overall results spotlight the significant behavioural changes that can be observed in workforce operations by improving labour performance, which resulted in implementing effective labour-rewarding practices within a framework. Research limitations/implications Although the study findings were limited to the Sri Lankan context, the proposed practices can be applied to the industry practices of the construction sector of other developing countries and the other developing industries in similar ways/scenarios. Practical implications The study outcomes contribute to uplifting the work qualities of labourers with life-long learning opportunities and unlocking the potential barriers for expanding the local labour supply while controlling the excessive inclination of the local firms towards foreign labour. This paper describes further implications and future scopes of the study elaborately. Originality/value The study provides generalised mechanisms and practices that transform the labour characteristics and add new attributes for strengthening the values of construction supervision practices to obtain well-improved work outputs. The study outcomes reinforce the chain relationships among the training elements, labour performance and productivity levels, leading to upgrading current planning and operational management practices, especially adding constructive mechanisms in resource levelling and productivity benchmarking practices.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Reference31 articles.

1. Central Bank of Sri Lanka (2019), “Annual report”, Central Bank of Sri Lanka, Sri Lanka.

2. Game-based trench safety education: development and lessons learned;Journal of Information Technology in Construction,2011

3. Analysis of affected factors on construction productivity in vietnam;International Journal of Civil Engineering and Technology,2019

4. Structural equation model of the factors affecting construction labor productivity;Journal of Construction Engineering and Management,2018

5. Skills developments of labourers to achieve the successful project delivery in the Sri Lankan construction industry;Civil and Environmental Research,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3