Abstract
Purpose
In recent years, centrality measures have been extensively used to analyze real-world complex networks. Water distribution networks (WDNs), as a good example of complex networks, exhibit properties not shared by other networks. This raises concerns about the effectiveness of applying the classical centrality measures to these networks. The purpose of this paper is to generate a new centrality measure in order to stick more closely to WDNs features.
Design/methodology/approach
This work refines the traditional betweenness centrality by adding a hydraulic-based weighting factor in order to improve its fit with the WDNs features. Rather than an exclusive focus on the network topology, as does the betweenness centrality, the new centrality measure reflects the importance of each node by taking into account its topological location, its demand value and the demand distribution of other nodes in the network.
Findings
Comparative analysis proves that the new centrality measure yields information that cannot be captured by closeness, betweenness and eigenvector centrality and is more accurate at ranking the importance of the nodes in WDNs.
Practical implications
The following practical implications emerge from the centrality analysis proposed in this work. First, the maintenance strategy driven by the new centrality analysis enables practitioners to prioritize the components in the network based on the priority ranking attributed to each node. This allows for least cost decisions to be made for implementing the preventive maintenance strategies. Second, the output of the centrality analysis proposed herein assists water utilities in identifying the effects of components failure on the network performance, which in turn can support the design and deployment of an effective risk management strategy.
Originality/value
The new centrality measure, proposed herein, is distinct from the conventional centrality measures. In contrast to the classical centrality metrics in which the importance of components is assessed based on a pure topological viewpoint, the proposed centrality measure integrates both topological and hydraulic attributes of WDNs and therefore is more accurate at ranking the importance of the nodes.
Subject
General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献