Comparing optimization modeling approaches for the multi-mode resource-constrained multi-project scheduling problem

Author:

Kannimuthu MarimuthuORCID,Raphael Benny,Ekambaram Palaneeswaran,Kuppuswamy Ananthanarayanan

Abstract

Purpose Construction firms keep minimal resources to maintain productive working capital. Hence, resources are constrained and have to be shared among multiple projects in an organization. Optimal allocation of resources is a key challenge in such situations. Several approaches and heuristics have been proposed for this task. The purpose of this paper is to compare two approaches for multi-mode resource-constrained project scheduling in a multi-project environment. These are the single-project approach (portfolio optimization) and the multi-project approach (each project is optimized individually, and then heuristic rules are used to satisfy the portfolio constraint). Design/methodology/approach A direct search algorithm called Probabilistic Global Search Lausanne is used for schedule optimization. Multiple solutions are generated that achieve different trade-offs among the three criteria, namely, time, cost and quality. Good compromise solutions among these are identified using a multi-criteria decision making method, Relaxed Restricted Pareto Version 4. The solutions obtained using the single-project and multi-project approaches are compared in order to evaluate their advantages and disadvantages. Data from two sources are used for the evaluation: modified multi-mode resource-constrained project scheduling problem data sets from the project scheduling problem library (PSPLIB) and three real case study projects in India. Findings Computational results prove the superiority of the single-project approach over heuristic priority rules (multi-project approach). The single-project approach identifies better solutions compared to the multi-project approach. However, the multi-project approach involves fewer optimization variables and is faster in execution. Research limitations/implications It is feasible to adopt the single-project approach in practice; realistic resource constraints can be incorporated in a multi-objective optimization formulation; and good compromise solutions that achieve acceptable trade-offs among the conflicting objectives can be identified. Originality/value An integer programming model was developed in this research to optimize the multiple objectives in a multi-project environment considering explicit resource constraints and maximum daily costs constraints. This model was used to compare the performance of the two multi-project environment approaches. Unlike existing work in this area, the model used to predict the quality of activity execution modes is based on data collected from real construction projects.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference53 articles.

1. A multi-agent system for distributed multi-project scheduling: an auction-based negotiation approach;Engineering Applications of Artificial Intelligence,2012

2. A multi-agent system for decentralized multi-project scheduling with resource transfers;International Journal of Production Economics,2013

3. Optimizing financing cost in construction projects with fixed project duration;Journal of Construction Engineering & Management,2018

4. Maximizing expected contractor profit using an integrated model;Engineering, Construction and Architectural Management,2019

5. Time-cost tradeoff analysis with minimized project financing cost;Automation in Construction,2019

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3