The application of building information modeling (BIM) system in the smartification of green and sustainable buildings

Author:

Anjomshoa ErfanORCID

Abstract

PurposeNowadays, designing environmentally compatible buildings with acceptable performance in terms of cost, materials, and energy efficiency is considered crucial for developing sustainable cities. This research aims to identify and rank the most influential factors in the application of Building Information Modeling (BIM) systems in the smartification of green and sustainable buildings.Design/methodology/approachThe present research is applied and descriptive. In this study, we identified the most influential factors in the application of Building Information Modeling (BIM) systems through library studies and expert opinions. Data were collected using a questionnaire, and a combination of the one-sample t-test method with a 95% confidence level and the fuzzy VIKOR method was employed for analysis.FindingsThe results show that the most influential factors in the application of Building Information Modeling (BIM) systems in the Smartification of green and sustainable buildings, in order, are: “Energy saving and consumption reduction,” “Increased productivity and efficiency,” “Life-cycle assessment (LCA),” “Eco-friendly design,” “Integration with IoT and other technologies.”Originality/valueIn this study, while addressing the intersection of BIM technology, green building principles, and smart building objectives to optimize the performance of buildings during their life cycle, the most influential factors in the use of this system were ranked based on the criteria of “impact level,” “importance level,” and “availability of necessary tools” for implementation in Kerman. Moreover, solutions for more effectively utilizing this system in the smartification of green and intelligent buildings were proposed.

Publisher

Emerald

Reference125 articles.

1. Project sustainability: criteria to be introduced in BIM;Valori e Valutazioni,2019

2. Delivering on the sustainable development goals through long-term infrastructure planning;Global Environmental Change,2019

3. An experimental investigation of the integration of smart building components with building information model (BIM),2019

4. Minimizing materials wastage in construction-a lean construction approach;Journal of Engineering and Applied Science,2013

5. Prioritizing BIM capabilities of an organization: an interpretive structural modeling analysis;Procedia Engineering,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3