A new method for Arabic/Farsi numeral data set size reduction via modified frequency diagram matching

Author:

Amin Shayegan Mohammad,Aghabozorgi Saeed

Abstract

Purpose – Pattern recognition systems often have to handle problem of large volume of training data sets including duplicate and similar training samples. This problem leads to large memory requirement for saving and processing data, and the time complexity for training algorithms. The purpose of the paper is to reduce the volume of training part of a data set – in order to increase the system speed, without any significant decrease in system accuracy. Design/methodology/approach – A new technique for data set size reduction – using a version of modified frequency diagram approach – is presented. In order to reduce processing time, the proposed method compares the samples of a class to other samples in the same class, instead of comparing samples from different classes. It only removes patterns that are similar to the generated class template in each class. To achieve this aim, no feature extraction operation was carried out, in order to produce more precise assessment on the proposed data size reduction technique. Findings – The results from the experiments, and according to one of the biggest handwritten numeral standard optical character recognition (OCR) data sets, Hoda, show a 14.88 percent decrease in data set volume without significant decrease in performance. Practical implications – The proposed technique is effective for size reduction for all pictorial databases such as OCR data sets. Originality/value – State-of-the-art algorithms currently used for data set size reduction usually remove samples near to class's centers, or support vector (SV) samples between different classes. However, the samples near to a class center have valuable information about class characteristics, and they are necessary to build a system model. Also, SV s are important samples to evaluate the system efficiency. The proposed technique, unlike the other available methods, keeps both outlier samples, as well as the samples close to the class centers.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3