Supply chain network optimization with consideration of raw material and final product substitutions driven by price and carbon emissions

Author:

Wang Chuanxu,Li Yanbing,Wang Zhengcai

Abstract

Purpose This paper aims to develop a bi-objective mixed integer non-linear programing model to optimize the supply chain networks consisting of raw material providers, final product manufacturers and distribution centers. Raw material substitution caused by varying raw material supply amounts, prices and carbon emissions and final product substitution due to different product prices and carbon emissions are considered. Design/methodology/approach The proposed model aims to achieve total profit maximization and total carbon emission minimization. The objective function of carbon emissions is converted into a maximization problem by changing minimum to maximum. The composite objective function is the weighted sum of the bias value of each objective function. The model is then solved using software Lingo12. Findings Numerical analysis results show that an increase in the number of alternate raw materials for original raw material helps improve supply chain network performance, and variation in that number causes detectable but not significant changes in downstream final product substitution results. Originality/value The major differences between this work and existing research are as follows: first, although previous research considered carbon emissions in supply chain network optimization, it has not considered the substitution effects of products or raw materials. This paper considers the substitution of both raw material and productions. Second, the item substitution considered by previous research is derived from inventory shortage or price difference of original items. However, the substitution considered in the present paper is a response to differences in purchase price, production cost and carbon emissions for items.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3