A prediction model for the secure issuance scale of Chinese local government bonds

Author:

Jia Bowen,Wu Jiaying,Du Juan,Ji Yun,Zhu Lina

Abstract

Purpose The purpose of this paper is to calculate the local guaranteed fiscal revenue with the local fiscal revenue of 31 provinces, and predict their guaranteed fiscal revenue in 2018 with the artificial neural network (ANN). Design/methodology/approach The principal components analysis (PCA), particle swarm optimization (PSO) and extreme learning machine (ELM) model was designed to produce the inputs of KMV model. Then the KMV model was used for obtaining the default probabilities under different issuance scales. Data were collected from Wind Database. MATLAB 2018b and SPSS 22 were used in the field of modeling and results analysis. Findings This study’s findings show that PCA–PSO–ELM proposed in this research has the highest accuracy in terms of the prediction compared with ELM, back propagation neural network and auto regression. And PCA–PSO–ELM–KMV model can calculate the secure issuance scale of local government bonds effectively. Practical implications The sustainability forecast in this study can help local governments effectively control the scale of debt issuance, strengthen the budget management of local debt and establish the corresponding risk warning mechanism, which could make local governments maintain good credit ratings. Originality/value This study sheds new light on helping local governments avoid financial risks effectively, and it is conducive to establish a debt repayment reserve system for local governments and the proper arrangement for stock debt.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3