Scholarly publication venue recommender systems

Author:

Dehdarirad Hossein,Ghazimirsaeid Javad,Jalalimanesh Ammar

Abstract

PurposeThe purpose of this investigation is to identify, evaluate, integrate and summarize relevant and qualified papers through conducting a systematic literature review (SLR) on the application of recommender systems (RSs) to suggest a scholarly publication venue for researcher's paper.Design/methodology/approachTo identify the relevant papers published up to August 11, 2018, an SLR study on four databases (Scopus, Web of Science, IEEE Xplore and ScienceDirect) was conducted. We pursued the guidelines presented by Kitchenham and Charters (2007) for performing SLRs in software engineering. The papers were analyzed based on data sources, RSs classes, techniques/methods/algorithms, datasets, evaluation methodologies and metrics, as well as future directions.FindingsA total of 32 papers were identified. The most data sources exploited in these papers were textual (title/abstract/keywords) and co-authorship data. The RS classes in the selected papers were almost equally used. DBLP was the main dataset utilized. Cosine similarity, social network analysis (SNA) and term frequency–inverse document frequency (TF–IDF) algorithm were frequently used. In terms of evaluation methodologies, 24 papers applied only offline evaluations. Furthermore, precision, accuracy and recall metrics were the popular performance metrics. In the reviewed papers, “use more datasets” and “new algorithms” were frequently mentioned in the future work part as well as conclusions.Originality/valueGiven that a review study has not been conducted in this area, this paper can provide an insight into the current status in this area and may also contribute to future research in this field.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference63 articles.

1. The urge to publish more and its consequences;Daru Journal of Pharmaceutical Sciences,2014

2. Recommendation of scholarly venues based on dynamic user interests;Journal of Informetrics,2017

3. Recommending scientific collaboration based on topical, authors and venues similarities,2018

4. Recommender systems: a systematic review of the state of the art literature and suggestions for future research;Kybernetes,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3