Incorporating user behavior flow for user risk assessment

Author:

Shan Yuxiang,Ren Qin,Yu Gang,Li Tiantian,Cao Bin

Abstract

Purpose Internet marketing underground industry users refer to people who use technology means to simulate a large number of real consumer behaviors to obtain marketing activities rewards illegally, which leads to increased cost of enterprises and reduced effect of marketing. Therefore, this paper aims to construct a user risk assessment model to identify potential underground industry users to protect the interests of real consumers and reduce the marketing costs of enterprises. Design/methodology/approach Method feature extraction is based on two aspects. The first aspect is based on traditional statistical characteristics, using density-based spatial clustering of applications with noise clustering method to obtain user-dense regions. According to the total number of users in the region, the corresponding risk level of the receiving address is assigned. So that high-quality address information can be extracted. The second aspect is based on the time period during which users participate in activities, using frequent item set mining to find multiple users with similar operations within the same time period. Extract the behavior flow chart according to the user participation, so that the model can mine the deep relationship between the participating behavior and the underground industry users. Findings Based on the real underground industry user data set, the features of the data set are extracted by the proposed method. The features are experimentally verified by different models such as random forest, fully-connected layer network, SVM and XGBOST, and the proposed method is comprehensively evaluated. Experimental results show that in the best case, our method can improve the F1-score of traditional models by 55.37%. Originality/value This paper investigates the relative importance of static information and dynamic behavior characteristics of users in predicting underground industry users, and whether the absence of features of these categories affects the prediction results. This investigation can go a long way in aiding further research on this subject and found the features which improved the accuracy of predicting underground industry users.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference34 articles.

1. A new hybrid ensemble credit scoring model based on classifiers consensus system approach;Expert Systems with Applications,2016

2. LIBSVM: a library for support vector machines;ACM Transactions on Intelligent Systems and Technology,2007

3. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries;Journal of Critical Care,2019

4. Financing risk prediction of science and technology enterprises based on sample weighted SVM model;Journal of Industrial Technological Economics,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3