A convolutional neural network to identify the change point of a multistage process profile with cascade property

Author:

Atashgar KarimORCID,Boush Mahnaz

Abstract

PurposeWhen a process experiences an out-of-control condition, identification of the change point is capable of leading practitioners to an effective root cause analysis. The change point addresses the time when a special cause(s) manifests itself into the process. In the statistical process monitoring when the chart signals an out-of-control condition, the change point analysis is an important step for the root cause analysis of the process. This paper attempts to propose a model approaching the artificial neural network to identify the change point of a multistage process with cascade property in the case that the process is modeled properly by a simple linear profile.Design/methodology/approachIn practice, many processes can be modeled by a functional relationship rather than a single random variable or a random vector. This approach of modeling is referred to as the profile in the statistical process control literature. In this paper, two models based on multilayer perceptron (MLP) and convolutional neural network (CNN) approaches are proposed for identifying the change point of the profile of a multistage process.FindingsThe capability of the proposed models are evaluated and compared using several numerical scenarios. The numerical analysis of the proposed neural networks indicates that the two proposed models are capable of identifying the change point in different scenarios effectively. The comparative sensitivity analysis shows that the capability of the proposed convolutional network is superior compared to MLP network.Originality/valueTo the best of the authors' knowledge, this is the first time that: (1) A model is proposed to identify the change point of the profile of a multistage process. (2) A convolutional neural network is modeled for identifying the change point of an out-of-control condition.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference37 articles.

1. A robust wavelet based profile monitoring and change point detection using S-estimator and clustering;Journal of Industrial and Systems Engineering,2018

2. Identification of the change point: an overview;International Journal of Advanced Manufacturing Technology,2013

3. Monitoring multivariate environments using artificial neural network approach: an overview;Scientia Iranica,2015

4. A new model to monitor very small effects of a polynomial profile;International Journal of Quality and Reliability Management,2021

5. Identifying change point in a bivariate normal process mean vector with monotonic changes;International Journal of Industrial Engineering and Production Management,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3