Savitar: an intelligent sign language translation approach for deafness and dysphonia in the COVID-19 era

Author:

Liang WuyanORCID,Xu XiaolongORCID

Abstract

PurposeIn the COVID-19 era, sign language (SL) translation has gained attention in online learning, which evaluates the physical gestures of each student and bridges the communication gap between dysphonia and hearing people. The purpose of this paper is to devote the alignment between SL sequence and nature language sequence with high translation performance.Design/methodology/approachSL can be characterized as joint/bone location information in two-dimensional space over time, forming skeleton sequences. To encode joint, bone and their motion information, we propose a multistream hierarchy network (MHN) along with a vocab prediction network (VPN) and a joint network (JN) with the recurrent neural network transducer. The JN is used to concatenate the sequences encoded by the MHN and VPN and learn their sequence alignments.FindingsWe verify the effectiveness of the proposed approach and provide experimental results on three large-scale datasets, which show that translation accuracy is 94.96, 54.52, and 92.88 per cent, and the inference time is 18 and 1.7 times faster than listen-attend-spell network (LAS) and visual hierarchy to lexical sequence network (H2SNet) , respectively.Originality/valueIn this paper, we propose a novel framework that can fuse multimodal input (i.e. joint, bone and their motion stream) and align input streams with nature language. Moreover, the provided framework is improved by the different properties of MHN, VPN and JN. Experimental results on the three datasets demonstrate that our approaches outperform the state-of-the-art methods in terms of translation accuracy and speed.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3