Abstract
PurposeA major key success factor regarding proficient Bayes threshold denoising refers to noise variance estimation. This paper focuses on assessing different noise variance estimations in three Bayes threshold models on two different characteristic brain lesions/tumor magnetic resonance imaging (MRIs).Design/methodology/approachHere, three Bayes threshold denoising models based on different noise variance estimations under the stationary wavelet transforms (SWT) domain are mainly assessed, compared to state-of-the-art non-local means (NLMs). Each of those three models, namely D1, GB and DR models, respectively, depends on the most detail wavelet subband at the first resolution level, on the entirely global detail subbands and on the detail subband in each direction/resolution. Explicit and implicit denoising performance are consecutively assessed by threshold denoising and segmentation identification results.FindingsImplicit performance assessment points the first–second best accuracy, 0.9181 and 0.9048 Dice similarity coefficient (Dice), sequentially yielded by GB and DR; reliability is indicated by 45.66% Dice dropping of DR, compared against 53.38, 61.03 and 35.48% of D1 GB and NLMs, when increasing 0.2 to 0.9 noise level on brain lesions MRI. For brain tumor MRI under 0.2 noise level, it denotes the best accuracy of 0.9592 Dice, resulted by DR; however, 8.09% Dice dropping of DR, relative to 6.72%, 8.85 and 39.36% of D1, GB and NLMs is denoted. The lowest explicit and implicit denoising performances of NLMs are obviously pointed.Research limitations/implicationsA future improvement of denoising performance possibly refers to creating a semi-supervised denoising conjunction model. Such model utilizes the denoised MRIs, resulted by DR and D1 thresholding model as uncorrupted image version along with the noisy MRIs, representing corrupted version ones during autoencoder training phase, to reconstruct the original clean image.Practical implicationsThis paper should be of interest to readers in the areas of technologies of computing and information science, including data science and applications, computational health informatics, especially applied as a decision support tool for medical image processing.Originality/valueIn most cases, DR and D1 provide the first–second best implicit performances in terms of accuracy and reliability on both simulated, low-detail small-size region-of-interest (ROI) brain lesions and realistic, high-detail large-size ROI brain tumor MRIs.
Subject
Library and Information Sciences,Information Systems
Reference56 articles.
1. A wavelet technique for the study of economic socio-political situations in a textual analysis framework;Journal of Economic Studies,2018
2. Agostinelli, F., Anderson, M.R. and Lee, H. (2013), “Adaptive multi-column deep neural networks with application to robust image denoising”, in Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z. and Weinberger, K.Q. (Eds), NIPS 2013: Advances in Neural Information Processing Systems, NIPS Foundation, Lake Tahoe, NV, pp. 1493-1501.
3. Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation;Journal of Medical Imaging,2017
4. Anisotropic diffusion based denoising on concrete images and surface crack segmentation;International Journal of Structural Integrity,2019
5. SegAE: unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder;Neuro Image: Clinical,2019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献