Performance prediction of multivariable linear regression based on the optimal influencing factors for ranking aggregation in crowdsourcing task

Author:

Xing YupingORCID,Zhan Yongzhao

Abstract

PurposeFor ranking aggregation in crowdsourcing task, the key issue is how to select the optimal working group with a given number of workers to optimize the performance of their aggregation. Performance prediction for ranking aggregation can solve this issue effectively. However, the performance prediction effect for ranking aggregation varies greatly due to the different influencing factors selected. Although questions on why and how data fusion methods perform well have been thoroughly discussed in the past, there is a lack of insight about how to select influencing factors to predict the performance and how much can be improved of.Design/methodology/approachIn this paper, performance prediction of multivariable linear regression based on the optimal influencing factors for ranking aggregation in crowdsourcing task is studied. An influencing factor optimization selection method based on stepwise regression (IFOS-SR) is proposed to screen the optimal influencing factors. A working group selection model based on the optimal influencing factors is built to select the optimal working group with a given number of workers.FindingsThe proposed approach can identify the optimal influencing factors of ranking aggregation, predict the aggregation performance more accurately than the state-of-the-art methods and select the optimal working group with a given number of workers.Originality/valueTo find out under which condition data fusion method may lead to performance improvement for ranking aggregation in crowdsourcing task, the optimal influencing factors are identified by the IFOS-SR method. This paper presents an analysis of the behavior of the linear combination method and the CombSUM method based on the optimal influencing factors, and optimizes the task assignment with a given number of workers by the optimal working group selection method.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3