On efficiency and effectiveness of finite volume method for thermal analysis of selective laser melting

Author:

Wang Jin,Wang Yi,Shi Jing

Abstract

Purpose Selective laser melting (SLM) is a major additive manufacturing (AM) process in which laser beams are used as the heat source to melt and deposit metals in a layerwise fashion to enable the construction of components of arbitrary complexity. The purpose of this paper is to develop a framework for accurate and fast prediction of the temperature distribution during the SLM process. Design/methodology/approach A fast computation tool is proposed for thermal analysis of the SLM process. It is based on the finite volume method (FVM) and the quiet element method to allow the development of customized functionalities at the source level. The results obtained from the proposed FVM approach are compared against those obtained from the finite element method (FEM) using a well-established commercial software, in terms of accuracy and efficiency. Findings The results show that for simulating the SLM deposition of a cubic block with 81,000, 189,000 and 297,000 cells, the computation takes about 767, 3,041 and 7,054 min, respectively, with the FEM approach; while 174, 679 and 1,630 min with the FVM code. This represents a speedup of around 4.4x. Meanwhile, the average temperature difference between the two is below 6%, indicating good agreement between them. Originality/value The thermal field for the multi-track and multi-layer SLM process is for the first time computed by the FVM approach. This pioneering work on comparing FVM and FEM for SLM applications implies that a fast and simple computing tool for thermal analysis of the SLM process is within the reach, and it delivers comparable accuracy with significantly higher computational efficiency. The research results lay the foundation for a potentially cost-effective tool for investigating the fundamental microstructure evolution, and also optimizing the process parameters in the SLM process.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference38 articles.

1. Numerical analysis of heat transfer and fluid flow in multilayer deposition of paw-based wire and arc additive manufacturing;International Journal of Heat and Mass Transfer,2018

2. Calibration of heat source model in numerical simulations of fusion welding;Machines, Technologies, Materials,2013

3. Selective laser melting finite element modeling: validation with high-speed imaging and lack of fusion defects prediction;Materials and Design,2018

4. Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media;Journal of Quantitative Spectroscopy and Radiative Transfer,2011

5. Numerical modelling and experimental validation in selective laser melting;Additive Manufacturing,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3