Multi-scale reliability-based design optimisation framework for fibre-reinforced composite laminates

Author:

Omairey Sadik Lafta,Dunning Peter Donald,Sriramula Srinivas

Abstract

Purpose The purpose of this study is to enable performing reliability-based design optimisation (RBDO) for a composite component while accounting for several multi-scale uncertainties using a large representative volume element (LRVE). This is achieved using an efficient finite element analysis (FEA)-based multi-scale reliability framework and sequential optimisation strategy. Design/methodology/approach An efficient FEA-based multi-scale reliability framework used in this study is extended and combined with a proposed sequential optimisation strategy to produce an efficient, flexible and accurate RBDO framework for fibre-reinforced composite laminate components. The proposed RBDO strategy is demonstrated by finding the optimum design solution for a composite component under the effect of multi-scale uncertainties while meeting a specific stiffness reliability requirement. Performing this using the double-loop approach is computationally expensive because of the number of uncertainties and function evaluations required to assess the reliability. Thus, a sequential optimisation concept is proposed, which starts by finding a deterministic optimum solution, then assesses the reliability and shifts the constraint limit to a safer region. This is repeated until the desired level of reliability is reached. This is followed by a final probabilistic optimisation to reduce the mass further and meet the desired level of stiffness reliability. In addition, the proposed framework uses several surrogate models to replace expensive FE function evaluations during optimisation and reliability analysis. The numerical example is also used to investigate the effect of using different sizes of LRVEs, compared with a single RVE. In future work, other problem-dependent surrogates such as Kriging will be used to allow predicting lower probability of failures with high accuracy. Findings The integration of the developed multi-scale reliability framework with the sequential RBDO optimisation strategy is proven computationally feasible, and it is shown that the use of LRVEs leads to less conservative designs compared with the use of single RVE, i.e. up to 3.5% weight reduction in the case of the 1 × 1 RVE optimised component. This is because the LRVE provides a representation of the spatial variability of uncertainties in a composite material while capturing a wider range of uncertainties at each iteration. Originality/value Fibre-reinforced composite laminate components designed using reliability and optimisation have been investigated before. Still, they have not previously been combined in a comprehensive multi-scale RBDO. Therefore, this study combines the probabilistic framework with an optimisation strategy to perform multi-scale RBDO and demonstrates its feasibility and efficiency for an fibre reinforced polymer component design.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference42 articles.

1. Abaqus CAE, 2017;ABAQUS Inc,2013

2. Uncertainty quantification using evidence theory in multidisciplinary design optimization;Reliability Engineering and System Safety,2004

3. Optimization in reliability based design of laminated;Composite Structures, WIT Transactions on the Built Environment,1993

4. Enhanced two-level optimization of anisotropic laminated composite plates with strength and buckling constraints;Thin-Walled Structures,2009

5. Particle swarm optimization versus genetic algorithms for phased array synthesis;IEEE Transactions on Antennas and Propagation,2004

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3